

Section 9

Fundamentals of Algorithms for Constrained Optimization

Follows N & W, section 15.

9.1 TYPES OF CONSTRAINED OPTIMIZATION ALGORITHMS

Types of Optimization Algorithms

- All of the algorithms solve iteratively a simpler problem.
 - Penalty and Augmented Lagrangian Methods.
 - Sequential Quadratic Programming.
 - Interior-point Methods.
- The approach follows the usual divide-and-conquer approach:
 - Constrained Optimization-
 - Unconstrained Optimization
 - Nonlinear Equations
 - Linear Equations

Quadratic Programming Problems

- Algorithms for such problems are interested to explore because
 - 1. Their structure can be efficiently exploited.
 - 2. They form the basis for other algorithms, such as augmented Lagrangian and Sequential quadratic programming problems.

$$\min_{x} \quad q(x) = \frac{1}{2}x^{T}Gx + x^{T}c$$
subject to
$$a_{i}^{T}x = b_{i}, \quad i \in \mathcal{E},$$

$$a_{i}^{T}x \geq b_{i}, \quad i \in \mathcal{I},$$

Penalty Methods

- Idea: Replace the constraints by a penalty term.
- Inexact penalties: parameter driven to infinity to recover solution. Example:

$$x^* = \arg\min f(x)$$
 subject to $c(x) = 0 \Leftrightarrow$

$$x^{\mu} = \arg\min f(x) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(x); \ x^* = \lim_{\mu \to \infty} x^{\mu} = x^*$$

Solve with unconstrained optimization

• Exact but nonsmooth penalty – the penalty parameter can stay finite.

$$x^* = \arg\min f(x)$$
 subject to $c(x) = 0 \Leftrightarrow x^* = \arg\min f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)|; \mu \ge \mu_0$

Augmented Lagrangian Methods

• Mix the Lagrangian point of view with a penalty point of view.

$$x^* = \arg\min f(x) \text{ subject to } c(x) = 0 \Leftrightarrow$$

$$x^{\mu,\lambda} = \arg\min f(x) - \sum_{i \in \mathcal{E}} \lambda_i c_i(x) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(x) \Rightarrow$$

$$x^* = \lim_{\lambda \to \lambda^*} x^{\mu,\lambda} \text{ for some } \mu \ge \mu_0 > 0$$

Sequential Quadratic Programming

Algorithms

• Solve successively Quadratic Programs.

$$\min_{p} \frac{1}{2} p^{T} B_{k} p + \nabla f(x_{k})$$
subject to
$$\nabla c_{i}(x_{k}) d + c_{i}(x_{k}) = 0 \quad i \in \mathcal{E}$$

$$\nabla c_{i}(x_{k}) d + c_{i}(x_{k}) \ge 0 \quad i \in \mathcal{I}$$

- It is the analogous of Newton's method for the case of constraints if $B_k = \nabla^2_{xx} \mathcal{L}(x_k, \lambda_k)$
- But how do you solve the subproblem? It is possible with extensions of simplex which I do not cover.
- An option is BFGS which makes it convex.

Interior Point Methods

• Reduce the inequality constraints with a barrier

$$\min_{x,s} f(x) - \mu \sum_{i=1}^{m} \log s_{i}$$
subject to
$$c_{i}(x) = 0 \qquad i \in \mathcal{E}$$

$$c_{i}(x) - s_{i} = 0 \qquad i \in \mathcal{I}$$

• An alternative, is use a penalty as well:

$$\min_{x} f(x) - \mu \sum_{i \in \mathcal{I}} \log s_i + \frac{1}{2\mu} \sum_{i \in \mathcal{I}} (c_i(x) - s)^2 + \frac{1}{2\mu} \sum_{i \in \mathcal{E}} (c_i(x))^2$$

• And I can solve it as a sequence of unconstrained problems!

9.2 MERIT FUNCTIONS AND FILTERS

Feasible algorithms

- If I can afford to maintain feasibility at all steps, then I just monitor decrease in objective function.
- I accept a point if I have enough descent.
- But this works only for very particular constraints, such as linear constraints or bound constraints (and we will use it).
- Algorithms that do that are called feasible algorithms.

Infeasible algorithms

- But, sometimes it is VERY HARD to enforce feasibility at all steps (e.g. nonlinear equality constraints).
- And I need feasibility only in the limit; so there is benefit to allow algorithms to move on the outside of the feasible set.
- But then, how do I measure progress since I have two, apparently contradictory requirements:
 - Reduce infeasibility (e.g. $\sum_{i \in \mathcal{E}} |c_i(x)| + \sum_{i \in \mathcal{I}} \max\{-c_i(x), 0\}$)
 - Reduce objective function.
 - It has a multiobjective optimization nature!

9.2.1 MERIT FUNCTIONS

Merit function

• One idea also from multiobjective optimization: minimize a weighted combination of the 2 criteria.

$$\phi(x) = w_1 f(x) + w_2 \left[\sum_{i \in \mathcal{E}} |c_i(x)| + \sum_{i \in \mathcal{I}} \max \{-c_i(x), 0\} \right]; \quad w_1, w_2 > 0$$

- But I can scale it so that the weight of the objective is 1.
- In that case, the weight of the infeasibility measure is called "penalty parameter".
- I can monitor progress by ensuring that $\phi(x)$ decreases, as in unconstrained optimization.

Nonsmooth Penalty Merit Functions

$$\phi_1(x;\mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} [c_i(x)]^-, \quad [z]^- = \max\{0, -z\}.$$

• It is called the 11 merit function.

Penalty parameter

• Sometimes, they can be even EXACT.

Definition 15.1 (Exact Merit Function).

A merit function $\phi(x; \mu)$ is exact if there is a positive scalar μ^* such that for any $\mu > \mu^*$, any local solution of the nonlinear programming problem (15.1) is a local minimizer of $\phi(x; \mu)$.

We show in Theorem 17.3 that, under certain assumptions, the ℓ_1 merit function $\phi_1(x; \mu)$ is exact and that the threshold value μ^* is given by

$$\mu^* = \max\{|\lambda_i^*|, \ i \in \mathcal{E} \cup \mathcal{I}\},\$$

Smooth and Exact Penalty

Functions

- Excellent convergence properties, but very expensive to compute.
- Fletcher's augmented Lagrangian:

$$\phi_{\scriptscriptstyle F}(x;\mu) = f(x) - \lambda(x)^T c(x) + \frac{1}{2} \mu \sum_{i \in \mathcal{E}} c_i(x)^2,$$

$$\lambda(x) = [A(x)A(x)^T]^{-1}A(x)\nabla f(x).$$

• It is both smooth and exact, but perhaps impractical due to the linear solve.

Augmented Lagrangian

• Smooth, but inexact.

$$\phi(x) = f(x) - \sum_{i \in \mathcal{E}} \lambda_i c_i(x) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(x) \Longrightarrow$$

- An update of the Lagrange Multiplier is needed.
- We will not uses it, except with Augmented Lagrangian methods themselves.

Line-search (Armijo) for

Nonsmooth Merit Functions

$$\phi_1(x; \mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} [c_i(x)]^-,$$

- How do we carry out the "progress search"?
- That is the line search or the sufficient reduction in trust region?
- In the unconstrained case, we had

$$f(x_k) - f(x_k + \beta^m d_k) \ge -\rho \beta^m \nabla f(x_k)^T d_k; \quad 0 < \beta < 1, 0 < \rho < 0.5$$

• But we cannot use this anymore, since the function is not differentiable.

Directional Derivatives of

Nonsmooth Merit Function

$$\phi_1(x; \mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} [c_i(x)]^-,$$

• Nevertheless, the function has a directional derivative (follows from properties of max function). EXPAND

$$D(\phi(x,\mu);p) = \lim_{t\to 0, t>0} \frac{\phi(x+tp,\mu) - \phi(x,\mu)}{t}; \quad D(\max\{f_1,f_2\},p) = \max\{\nabla f_1 p, \nabla f_1 p\}$$

- Line Search: $\phi(x_k,\mu) \phi(x_k + \beta^m p_k,\mu) \ge -\rho\beta^m D(\phi(x_k,\mu),p_k);$
- Trust Region

$$\phi(x_{k},\mu) - \phi(x_{k} + \beta^{m} p_{k},\mu) \ge -\eta_{1}(m(0) - m(p_{k}));$$

$$0 < \eta_{1} < 0.5$$

And How do I choose the

penalty parameter?

- VERY tricky issue, highly dependent on the penalty function used.
- For the 11 function, guideline is:

$$\mu^* = \max\{|\lambda_i^*|, i \in \mathcal{E} \cup \mathcal{I}\},\$$

- But almost always adaptive. Criterion: If optimality gets ahead of feasibility, make penalty parameter more stringent.
- E.g l1 function: the max of current value of multipliers plus safety factor (EXPAND)

9.2.2 FILTER APPROACHES

Principles of filters

• Originates in the multiobjective optimization philosophy: objective and infeasibility

$$h(x) = \sum_{i \in \mathcal{E}} |c_i(x)| + \sum_{i \in \mathcal{I}} [c_i(x)]^-,$$

• The problem becomes:

$$\min_{x} f(x)$$
 and $\min_{x} h(x)$.

The Filter approach

Definition 15.2.

- (a) A pair (f_k, h_k) is said to dominate another pair (f_l, h_l) if both $f_k \leq f_l$ and $h_k \leq h_l$.
- (b) A filter is a list of pairs (f_l, h_l) such that no pair dominates any other.
- (c) An iterate x_k is said to be acceptable to the filter if (f_k, h_k) is not dominated by any pair in the filter.

Some Refinements

- Like in the line search approach, I cannot accept EVERY decrease since I may never converge.
- Modification:

A trial iterate x^+ is acceptable to the filter if, for all pairs (f_j, h_j) in the filter, we have that

$$f(x^+) \le f_j - \beta h_j$$
 or $h(x^+) \le h_j - \beta h_j$, $\beta \sim 10^{-5}$ (15.33)

9.3 MARATOS EFFECT AND CURVILINEAR SEARCH

Unfortunately, the Newton step may

not be compatible with penalty

- This is called the Maratos effect.
- Problem:

min
$$f(x_1, x_2) = 2(x_1^2 + x_2^2 - 1) - x_1$$
,
 $x_1^2 + x_2^2 - 1 = 0$.

- Note: the closest point on search direction (Newton) will be rejected!
- So fast convergence does not occur

Solutions?

- Use Fletcher's function that does not suffer from this problem.
- Following a step: $A_k p_k + c(x_k) = 0$.
- Use a correction that satisfies $A_k \hat{p}_k + c(x_k + p_k) = 0$.

$$\hat{p}_k = -A_k^T (A_k A_k^T)^{-1} c(x_k + p_k),$$

• Followed by the update or line search:

$$x_k + p_k + \hat{p}_k \qquad x_k + \tau p_k + \tau^2 \hat{p}_k$$

• Since $c(x_k + p_k + \hat{p}_k) = O(\|x_k - x^*\|^3)$ compared to $c(x_k + p_k) = O(\|x_k - x^*\|^2)$ corrected Newton step is likelier to be accepted.

Section 11 Algorithms for Nonlinear Optimization. Follows N & W, 17 and 19.

Algorithms for constrained optimization

- It is the story of putting ALL these blocks together.
- Augmented Lagrangian
- Interior Point
- Sequential Quadratic Programming

11.1 AUGMENTED LAGRANGIAN

AUGLAG: Equality Constraints

• The augmented Lagrangian:

$$\mathcal{L}_A(x,\lambda;\mu) \stackrel{\text{def}}{=} f(x) - \sum_{i \in \mathcal{E}} \lambda_i c_i(x) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(x),$$

• Observation: if

$$\lambda = \lambda^*; \, \mu \ge \mu_0 \Longrightarrow \nabla_x \mathcal{L}_{\mathcal{A}} \left(x^*, \lambda^*, \mu \right) = 0;$$

$$\nabla^2_{xx} \mathcal{L}_{\mathcal{A}} \left(x^*, \lambda^*, \mu \right) = \nabla^2_{xx} \mathcal{L} \left(x^*, \lambda^*, \mu \right) + \mu \left(\nabla c \left(x^* \right) \right)^T \left(\nabla c \left(x^* \right) \right)$$

AUGLAG: SOC

- So x* is a stationary point for Auglag for exact multipliers ... but is it a minimum?
- Yes, for mu sufficiently large.

$$\nabla_{xx}^{2} \mathcal{L}_{A}(x^{*}, \lambda^{*}, \mu) \sim \begin{bmatrix} Y & Z \end{bmatrix}^{T} \nabla_{xx}^{2} \mathcal{L}_{A}(x^{*}, \lambda^{*}, \mu) \begin{bmatrix} Y & Z \end{bmatrix} + \mu (\nabla c(x^{*})Y)^{T} (\nabla c(x^{*})Y) = \begin{bmatrix} Z^{T} \nabla_{xx}^{2} \mathcal{L}_{A}(x^{*}, \lambda^{*}, \mu) Z & * \\ * & * + \mu (\nabla c(x^{*})Y)^{T} (\nabla c(x^{*})Y) \end{bmatrix} > 0 \text{ for } \mu \text{ suff large.}$$

• So it is *almost* as solving unconstrained problem ... but how do I find multiplier estimates?

Multiplier Estimates Auglag

• At the current estimate, solve problem

$$0 \approx \nabla_{x} \mathcal{L}_{A}(x_{k}, \lambda^{k}; \mu_{k}) = \nabla f(x_{k}) - \sum_{i \in \mathcal{E}} [\lambda_{i}^{k} - \mu_{k} c_{i}(x_{k})] \nabla c_{i}(x_{k}).$$

• The obvious choice:

$$\lambda_i^{k+1} = \lambda_i^k - \mu_k c_i(x_k), \quad \text{for all } i \in \mathcal{E}.$$

• What do I do if I converge lambda but x* is not feasible? Increase the penalty mu (it will have to end increasing eventually).

The general case

• The bound constrained formulation. Slacks.

$$c_i(x) \ge 0, i \in \mathcal{I},$$
 $c_i(x) - s_i = 0, \quad s_i \ge 0,$ for all $i \in \mathcal{I}$.

• The problem:

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad c_i(x) = 0, \ i = 1, 2, \dots, m, \ l \le x \le u.$$

The augmented Lagrangian

• The new AugLag

$$\mathcal{L}_A(x,\lambda;\mu) = f(x) - \sum_{i=1}^m \lambda_i c_i(x) + \frac{\mu}{2} \sum_{i=1}^m c_i^2(x).$$

• The bound constrained optimization problem:

$$\min_{x} \mathcal{L}_{A}(x, \lambda; \mu)$$
 subject to $l \leq x \leq u$.

• Same property: if Lagrange multiplier is the optimal one for eq cons and mu is large enough then x* is a solution!

Practical AugLag alg: LANCELOT

```
Choose an initial point x_0 and initial multipliers \lambda^0;
                                       Choose convergence tolerances \eta_* and \omega_*;
                                       Set \mu_0 = 10, \omega_0 = 1/\mu_0, and \eta_0 = 1/\mu_0^{0.1};
Main
                                       for k = 0, 1, 2, ...
                                               Find an approximate solution x_k of the subproblem (17.50) such that
computation:
Use bound
                                                         ||x_k - P(x_k - \nabla_x \mathcal{L}_A(x_k, \lambda^k; \mu_k), l, u)|| < \omega_k;
constrained
                                               if ||c(x_k)|| \leq \eta_k
projection.
                                                       (* test for convergence *)
                                                       if ||c(x_k)|| \le \eta_* and ||x_k - P(x_k - \nabla_x \mathcal{L}_A(x_k, \lambda^k; \mu_k), l, u)|| \le \omega_*
                                                               stop with approximate solution x_k;
                                                      end (if)
                                                      (* update multipliers, tighten tolerances *)
                                                      \lambda^{k+1} = \lambda^k - \mu_k c(x_k);
Forcing sequences
                                                      \omega_{k+1} = \omega_k/\mu_{k+1};
                                                      (* increase penalty parameter, tighten tolerances *)
                                                      \lambda^{k+1} = \lambda^k;
                                                      \mu_{k+1} = 100\mu_k;
                                                      \eta_{k+1} = 1/\mu_{k+1}^{0.1};
                                                      \omega_{k+1} = 1/\mu_{k+1};
                                              end (if)
                                      end (for)
```

Algorithm 17.4 (Bound-Constrained Lagrangian Method).

Solving the bound constrained subproblem

• It is an iterative bound constrained optimization algorithm with trust-region:

$$\min_{d} \frac{1}{2} d^{T} \left[\nabla_{xx}^{2} \mathcal{L}(x_{k}, \lambda^{k}) + \mu_{k} A_{k}^{T} A_{k} \right] d + \nabla_{x} \mathcal{L}_{A}(x_{k}, \lambda^{k}; \mu_{k})^{T} d$$
subject to $l \leq x_{k} + d \leq u$, $||d||_{\infty} \leq \Delta$,

- Each step solves a bound constrained QP (not necessarily PD), same as in your homework 4.
- The difference: after a subspace solve: compute the new derivative and update TR.

11.2 INTERIOR-POINT METHODS

Outline

- Same idea as in the case of the interior-point method for QP.
- Create a path that is interior with respect to the Lagrange multipliers and the slacks that depends on a smoothing parameter mu.
- Drive mu to 0.

Interior -point, "smoothing" parth

• Formulation (with slacks):

$$\min_{x,s} f(x)$$
subject to $c_{E}(x) = 0$,
$$c_{I}(x) - s = 0$$
,
$$s \ge 0$$
.

• Interior-point (smoothing path; mu=0: KKT)

$$\nabla f(x) - A_{E}^{T}(x)y - A_{I}^{T}(x)z = 0,$$
 $c_{E}(x) = 0,$ $c_{I}(x) - |s| = 0,$ $c_{I}(x) - |s| = 0,$

Barrier interpretation

• The nonlinear equation is the same as the KKT point of the barrier function:

$$\min_{x,s} f(x) - \mu \sum_{i=1}^{m} \log s_{i}$$
subject to $c_{E}(x) = 0$,
$$c_{I}(x) - s = 0$$
,

Newton Method:

Linearization for fixed mu:

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L} & 0 & -A_{E}^{T}(x) & -A_{I}^{T}(x) \\ 0 & Z & 0 & S \\ A_{E}(x) & 0 & 0 & 0 \\ A_{I}(x) & -I & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \end{bmatrix} = -\begin{bmatrix} \nabla f(x) - A_{E}^{T}(x)y - A_{I}^{T}(x)z \\ Sz - \mu e \\ c_{E}(x) \\ c_{I}(x) - S \end{bmatrix},$$

$$\mathcal{L}(x, s, y, z) = f(x) - y^T c_{\scriptscriptstyle E}(x) - z^T (c_{\scriptscriptstyle I}(x) - s).$$

Choose the step

• The new iteration:

$$x^+ = x + \alpha_s^{\text{max}} p_x, \quad s^+ = s + \alpha_s^{\text{max}} p_s,$$

 $y^+ = y + \alpha_z^{\text{max}} p_y, \quad z^+ = z + \alpha_z^{\text{max}} p_z,$

• Where:

$$\alpha_s^{\text{max}} = \max\{\alpha \in (0, 1] : s + \alpha p_s \ge (1 - \tau)s\},
\alpha_z^{\text{max}} = \max\{\alpha \in (0, 1] : z + \alpha p_z \ge (1 - \tau)z\},$$

• And,

$$\tau = 0.99 - 0.995$$

How do I measure progress?

• Merit function:

$$E(x, s, y, z; \mu) = \max \{ \|\nabla f(x) - A_{E}(x)^{T} y - A_{I}(x)^{T} z \|, \|Sz - \mu e\|, \|c_{E}(x)\|, \|c_{I}(x) - s\| \},$$

• I try to decrease it as much as I can.

Basic Interior-Point Algorithm

```
Algorithm 19.1 (Basic Interior-Point Algorithm).
```

Choose x_0 and $s_0 > 0$, and compute initial values for the multipliers y_0 and $z_0 > 0$. Select an initial barrier parameter $\mu_0 > 0$ and parameters σ , $\tau \in (0, 1)$. Set $k \leftarrow 0$.

```
repeat until a stopping test for the nonlinear program (19.1) is satisfied repeat until E(x_k, s_k, y_k, z_k; \mu_k) \leq \mu_k

Solve (19.6) to obtain the search direction p = (p_x, p_s, p_y, p_z); Compute \alpha_s^{\max}, \alpha_z^{\max} using (19.9); Compute (x_{k+1}, s_{k+1}, y_{k+1}, z_{k+1}) using (19.8); Set \mu_{k+1} \leftarrow \mu_k and k \leftarrow k+1; end Choose \mu_k \in (0, \sigma \mu_k);
```

How to solve the linear system

• Rewriting the Newton Direction:

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L} & 0 & A_{E}^{T}(x) & A_{I}^{T}(x) \\ 0 & \Sigma & 0 & -I \\ A_{E}(x) & 0 & 0 & 0 \\ A_{I}(x) & -I & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{s} \\ -p_{y} \\ -p_{z} \end{bmatrix} = - \begin{bmatrix} \nabla f(x) - A_{E}^{T}(x)y - A_{I}^{T}(x)z \\ z - \mu S^{-1}e \\ c_{E}(x) \\ c_{I}(x) - s \end{bmatrix}$$

$$\Sigma = S^{-1}Z.$$

- Can use indefinite factorization LDLT.
- Or, projected CG (since it is in saddle-point form)

Linear System, part II

• Or, we can eliminate p_s and use LDLT

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L} & A_{E}^{T}(x) & A_{I}^{T}(x) \\ A_{E}(x) & 0 & 0 \\ A_{I}(x) & 0 & -\Sigma^{-1} \end{bmatrix} \begin{bmatrix} p_{x} \\ -p_{y} \\ -p_{z} \end{bmatrix} = - \begin{bmatrix} \nabla f(x) - A_{E}^{T}(x)y - A_{I}^{T}(x)z \\ c_{E}(x) \\ c_{I}(x) - \mu Z^{-1}e \end{bmatrix}$$

And even p_z:

$$\begin{bmatrix} \nabla_{xx}^2 \mathcal{L} + A_{\scriptscriptstyle \text{I}}^T \Sigma A_{\scriptscriptstyle \text{I}} & A_{\scriptscriptstyle \text{E}}^T (x) \\ A_{\scriptscriptstyle \text{E}}(x) & 0 \end{bmatrix}$$

How do we deal with nonconvexity and non-LICQ?

Regularization

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L} + \delta I & 0 & A_{E}(x)^{T} & A_{I}(x)^{T} \\ 0 & \Sigma & 0 & -I \\ A_{E}(x) & 0 & -\gamma I & 0 \\ A_{I}(x) & -I & 0 & 0 \end{bmatrix}.$$

- Choose delta so that signature of the matrix corresponds to positive definiteness of reduced matrix: (n+m, l+m, 0)
- For signature, can use LDLT

But, how do I know how far to go in

a direction?

• Backtracking search for merit function (based on barrier interpretation):

$$\phi_{\nu}(x, s) = f(x) - \mu \sum_{i=1}^{m} \log s_{i} + \nu \|c_{E}(x)\| + \nu \|c_{I}(x) - s\|,$$

$$\alpha_{S} \in (0, \alpha_{S}^{\max}], \qquad \alpha_{Z} \in (0, \alpha_{Z}^{\max}],$$

• Directional derivative (for line search)

$$\frac{\partial}{\partial p} \|c(x)\| = \frac{\partial}{\partial p} \sqrt{c(x)^T c(x)} = \begin{cases} \frac{c(x)}{\|c(x)\|} \nabla c(x) p & c(x) \neq 0 \\ \frac{\nabla c(x) p}{\|\nabla c(x) p\|} \nabla c(x) p & c(x) = 0, \nabla c(x) p \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

How do we update barrier

parameter?

• Decrease of barrier (example):

$$\mu_{k+1} = \sigma_k \mu_k$$
, with $\sigma_k \in (0, 1)$.

$$\sigma_k = 0.1 \min \left(0.05 \frac{1 - \xi_k}{\xi_k}, 2 \right)^3, \text{ where } \xi_k = \frac{\min_i [s_k]_i [z_k]_i}{(s^k)^T z^k / m}.$$

• Step update:

$$x^+ = x + \alpha_s p_x$$
, $s^+ = s + \alpha_s p_s$,
 $y^+ = y + \alpha_z p_y$, $z^+ = z + \alpha_z p_z$.

A practical interior-point algorithm

Algorithm 19.2 (Line Search Interior-Point Algorithm).

Choose x_0 and $s_0 > 0$, and compute initial values for the multipliers y_0 and $z_0 > 0$. If a quasi-Newton approach is used, choose an $n \times n$ symmetric and positive definite initial matrix B_0 . Select an initial barrier parameter $\mu > 0$, parameters η , $\sigma \in (0, 1)$, and tolerances ϵ_{μ} and ϵ_{TOL} . Set $k \leftarrow 0$.

```
repeat until E(x_k, s_k, y_k, z_k; 0) \le \epsilon_{\text{TOL}}

repeat until E(x_k, s_k, y_k, z_k; \mu) \le \epsilon_{\mu}

Compute the primal-dual direction p = (p_x, p_s, p_y, p_z) from (19.12), where the coefficient matrix is modified as in (19.25), if necessary;

Compute \alpha_s^{\max}, \alpha_z^{\max} using (19.9); Set p_w = (p_x, p_s);

Compute step lengths \alpha_s, \alpha_z satisfying both (19.27) and \phi_v(x_k + \alpha_s p_x, s_k + \alpha_s p_s) \le \phi_v(x_k, s_k) + \eta \alpha_s D \phi_v(x_k, s_k; p_w);

Compute (x_{k+1}, s_{k+1}, y_{k+1}, z_{k+1}) using (19.28); if a quasi-Newton approach is used update the approximation B_k;

Set k \leftarrow k+1; end

Set \mu \leftarrow \sigma \mu and update \epsilon_\mu; end
```

11.3 SEQUENTIAL QUADRATIC PROGRAMMING

• Start with equality constrained problem:

$$\min f(x)$$

subject to $c(x) = 0$,

• Find the solution p_k, l_k of problem with quadratic objective and linearized constraints called quadratic program.

$$\min_{p} f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p$$

subject to $A_k p + c_k = 0$.

• Define: $\lambda_{k+1} = l_k; x_{k+1} = x_k + p_k$ which gives Newton's.

Extension to inequality constraints.

• For problem: $\min f(x)$ subject to $c_i(x) = 0$, $i \in \mathcal{E}$, $c_i(x) \ge 0$, $i \in \mathcal{I}$.

• Solve successively the quadratic program:

$$\min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p$$
subject to
$$\nabla c_i(x_k)^T p + c_i(x_k) = 0, \quad i \in \mathcal{E},$$

$$\nabla c_i(x_k)^T p + c_i(x_k) \ge 0, \quad i \in \mathcal{I}.$$

• E.g use a BFGS approximation (though density an issue) and interior point (defined in section 10).

A sequential Linear-Quadratic

Program

- Analogous with the projection/subspace minimization algorithm.
- In Linear phase, solve (e.g by interior point)

$$\min_{p} \quad f_k + \nabla f_k^T p \quad \left(+ \frac{1}{2} p^T p \right)$$
subject to
$$c_i(x_k) + \nabla c_i(x_k)^T p = 0, \quad i \in \mathcal{E},$$

$$c_i(x_k) + \nabla c_i(x_k)^T p \ge 0, \quad i \in \mathcal{I},$$

$$\|p\|_{\infty} \le \Delta_k^{\text{LP}},$$

• Variation:

(infeas)

$$\min_{p} \quad l_{\mu}(p) \stackrel{\text{def}}{=} f_k + \nabla f_k^T p + \mu \sum_{i \in \mathcal{E}} |c_i(x_k) + \nabla c_i(x_k)^T p|$$

$$+ \mu \sum_{i \in \mathcal{I}} [c_i(x_k) + \nabla c_i(x_k)^T p]^{-1}$$
where $\sum_{i \in \mathcal{I}} |c_i(x_k)|^2 = \sum_{i \in \mathcal{I}} |c_i(x_i)|^2 = \sum_{i \in \mathcal{I}} |c_$

subject to
$$||p||_{\infty} \leq \Delta_k^{\text{LP}}$$
.

Determine active set in linear phase

• For feasible algorithm:

$$\mathcal{A}_{k}(p^{\text{LP}}) = \{i \in \mathcal{E} \mid c_{i}(x_{k}) + \nabla c_{i}(x_{k})^{T} p^{\text{LP}} = 0\} \cup \{i \in \mathcal{I} \mid c_{i}(x_{k}) + \nabla c_{i}(x_{k})^{T} p^{\text{LP}} = 0\}.$$

• For infeasible algorithm:

$$\mathcal{V}_{k}(p^{\text{LP}}) = \{i \in \mathcal{E} \mid c_{i}(x_{k}) + \nabla c_{i}(x_{k})^{T} p^{\text{LP}} \neq 0\} \cup \{i \in \mathcal{I} \mid c_{i}(x_{k}) + \nabla c_{i}(x_{k})^{T} p^{\text{LP}} < 0\}.$$

• Backtrack merit function on p^{LP} to obtain Cauchy pt p^c

$$q_{\mu}(p) \stackrel{\text{def}}{=} f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p + \mu \sum_{i \in \mathcal{E}} |c_i(x_k) + \nabla c_i(x_k)^T p| + \mu \sum_{i \in \mathcal{I}} [c_i(x_k) + \nabla c_i(x_k)^T p]^{-1}$$

Equality Constrained QP: EQP

• Determine the working active set:

$$\mathcal{W}_k \subset \mathcal{A}_k (\text{or } \mathcal{V}_k)$$

• Solve EQP:

$$\min_{p} f_{k} + \frac{1}{2}p^{T}\nabla_{xx}^{2}\mathcal{L}_{k}p + \left(\nabla f_{k} + \mu_{k}\sum_{i \in \mathcal{V}_{k}}\gamma_{i}\nabla c_{i}(x_{k})\right)^{T}p$$
subject to
$$c_{i}(x_{k}) + \nabla c_{i}(x_{k})^{T}p = 0, \quad i \in \mathcal{E} \cap \mathcal{W}_{k},$$

$$c_{i}(x_{k}) + \nabla c_{i}(x_{k})^{T}p = 0, \quad i \in \mathcal{I} \cap \mathcal{W}_{k},$$

$$\|p\|_{2} \leq \Delta_{k},$$

• E.g by truncated, projected CG.

Total Step

• Start from Cauchy Direction:

$$p_k = p^{\mathrm{c}} + \alpha^{\mathrm{Q}}(p^{\mathrm{Q}} - p^{\mathrm{c}}),$$

- Choose α^{ϱ} by backtracking using the same merit function as in first stage. (effectively, a dogleg).
- If the LP solution is infeasible, increase the penalty.